

Ethernet-based Software Defined Network (SDN)

Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲端運算行動應用研究中心

SDN Introduction

- Decoupling of control plane from data plane
 - Breaks the existing vertical integration model in network equipment industries
 - Enables quick development and deployment of innovative third-party control plane applications
- Centralization of control plane
 - Management vs. Control vs. Data plane
 - Facilitates fast deployment and upgrade of control protocols
 - Enables global allocation of a network's resources
- Software in software-defined network
 - User applications
 - Control protocols

SDN Software Architecture

OpenFlow Architecture

- OpenFlow switch: A data plane that implements a set of flow rules specified in terms of the OpenFlow instruction set
- OpenFlow controller: A control plane that sets up the flow rules in the flow tables of OpenFlow switches
- OpenFlow protocol: A secure protocol for an OpenFlow controller to set up the flow tables in OpenFlow switches

OpenFlow Basics

+ mask what fields to match

Examples

Switching

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	ACTION
*	*	00:1f	*	*	*	*	*	*	*	port6

Flow Switching

Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
port3	00:20	00:1f.	.0800	vlan1	1.2.3.4	5.6.7.8	4	17264	80	port6

Firewall

Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
										drop

Examples

Routing

Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
										port6

VLAN Switching

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	
*	*	00:1f	*	vlan1	*	*	*	*	*	port6, port7, port9

SDN ≠ **OpenFlow**

 Can we apply SDN to Ethernet switches, especially in cloud data center space? Peregrine

Cloud Data Center Architecture

Cloud Data Center Network

- Cloud data centers are **Big** and **Shared**
- Scalable and available data center fabrics
 - Not all links are used
 - No load-sensitive routing
 - Fail-over latency is high (> 5 seconds)
- Network virtualization: Each virtual data center (VDC) gets to define its own network
 - VMs in a VDC belong to one or multiple subnets (broadcast domains)
 - Each VDC has its own private IP address space
 - Each VDC has a set of public IP addresses for service entry points and for VPN connections with external sites
 - Each VDC has its Internet traffic shaping policy, intra-VDC and inter-VDC firewalling policy, and server load balancing policy

What's Wrong with Ethernet?

- Spanning tree-based
 - Not all physical links are used
 - No load-sensitive dynamic routing
 - Fail-over latency is high (> 5 seconds)
- Cannot scale to a large number of VMs (e.g. 1M)
 - Forwarding table is too small: 16K to 64K
- Does not support VM migration and visibility
- Does not support network virtualization

Peregrine

- A unified Layer-2-only data center network for LAN and SAN traffic
- A SDN architecture using only commodity Ethernet switches: centralized control plane and distributed data plane
- Turn off Ethernet's control protocol: spanning tree, source learning, flooding of unknown-destination-MAC packets, broadcast of ARP and DHCP
 - VLAN is optional because VLAN ID space is limited
- Centralized load-balancing routing using real-time traffic matrix
- Fast fail-over using pre-computed primary/backup routes
- Native support for network virtualization
 - Private IP address space reuse
 - Multiple subnets per virtual network

Peregrine Software Architecture

Dynamic Traffic Engineering

- Periodic collection of real-time traffic matrix
 - Traffic volume between each pair of VMs
 - Traffic volume between each pair of PMs
- Load balancing routing algorithm
 - Loads on the physical links
 - Number of hops
 - Forwarding table entries
 - Prioritization
- Computed routes are programmatically installed on the forwarding tables of Ethernet switches

Fast Failure Recovery

- For a given node N, proactively computes two disjoint paths (primary and backup) from every other node to N, and installs them on the associated switches
- All primary (secondary) paths to a given node N form a spanning tree
- Each node has two MAC addresses, which are installed on the switches of its primary and backup trees, respectively
- When a primary path from S to D goes down, S is notified that it should use D's backup MAC address to reach D
- RAS and DS support fail-over

Fast Failure Recovery Example

Network Virtualization

- Multiple virtual networks running on a single physical network
- The network of each virtual data center (VDC) consists of
 - VMs' MAC addresses are pre-assigned
 - A single layer-2 network
 - A complete private IP address space, organized into multiple subnets each with its own broadcast domain
 - A set of public IP addresses
 - Its own copy of the DHCP and DNS service
 - Security: Intra-VDC and inter-VDC firewall policy
 - SLA: Traffic shaping policy
 - Scalability: Server load balancing policy

Private IP Address Space Reuse

- Requirement: Every VDC has a VDC ID and its own full 24-bit private IP address space (10.x.x.x), even though multiple VDCs run on top of the same data center network
- Two approaches:
 - Ethernet over TCP/UDP:
 - Every Ethernet packet is encapsulated inside an TCP/UDP packet or TCP/UDP connection as an Ethernet link
 - Needs to implement in software such Ethernet switch functions as source learning, flooding, VLAN, etc.
 - Can work with arbitrary IP networks
 - Multi-tenancy-aware IP-MAC mapping: our approach
 - VDC ID + private IP address → MAC address
 - Runs directly on L2 networks, no need for Ethernet switch emulation
 - Inter-virtual-data-center isolation

Hybrid Cloud Support

Cross-Site Global Load Balancing

Cloud-based virtual data center On-premise physical data center

Peregrine in SDN Framework

- Data plane: Ethernet switches
- Southbound API: SNMP and CLI
- Controller: (1) Physical network resource set-up, (2) Physical topology record keeping, (3) SNMP trap processing, (4) Ethernet switch configuration, including forwarding table programming, and (5) Traffic load information
- Northbound API:
 - Failure/congestion notification, including SNMP trap packet delivery
 - ARP request packet delivery
 - Forwarding table programming
 - Physical topology/traffic load querying
- Control plane applications:
 - Dynamic traffic engineering
 - Fast fail-over for data/control plane failures
 - Network virtualization

Wish-List Ethernet Switch Features

- Ability to turn off flooding of unicast packets with unknown destination MAC address
- Ability to turn off source MAC address check
 →enables asymmetric routing
- Bulk uploading of forwarding table
- Fast link/switch failure detection
- Link traffic load counting
- Interception and redirection of packets of selected type

Comparisons

• Scalable and available data center fabrics

- IEEE 802.1aq: Shortest Path Bridging
- IETF TRILL
- Competitors: Cisco, Juniper, Brocade
- Differences: commodity switches, centralized load balancing routing and proactive backup route deployment
- Network virtualization
 - OpenFlow protocol: between OpenFlow controller and OpenFlow switches
 - Competitors: Nicira, NEC and NTT
 - Generality carries a steep performance price
 - Every virtual network link is a tunnel
 - Differences: Simpler and more efficient because it runs on L2 switches directly
 - Flow table state management and flow table lookup performance overhead

Current Status

- A fully operational Peregrine prototype that works on a 10switch and 100-server test-bed
 - Start-up and shut-down without out-of-band control network
 - Fast fail-over for both data plane and control plane failures
 - Dynamic traffic engineering
- On-going work:
 - An agentless implementation of Peregrine
 - Encapsulate Peregrine with Internet Edge Logic functionalities as a Quantum plug-in implementation
 - Port dynamic traffic engineering, fast fail-over, and network virtualization to an OpenFlow platform, i.e. OF controller + OF switches

Summary

- Peregrine is a network system technology, not a network device technology, and consists of
 - A hypervisor agent running on every compute node
 - L7/Web application firewall and traffic shaping
 - A centralized route server and directory server
 - A VDC-aware Internet Edge Logic cluster
 - Server load balancing, VPN, NAT, and L4 firewall
- Network virtualization technology that does not use tunneling or VLAN
- A software defined network (SDN) architecture that runs on commodity Ethernet switches, and is able to manage both legacy Ethernet and OpenFlow switches

Thank You!

For More Information:

Y.F. Juan / 阮耀飛 Deputy Director Strategy & Business Development Cloud and Mobile Computing Center Industrial Technology Research Institute t: +886 (0) 3.591.6173 m: +886 (0) 975.876.919 e: yf.juan@itri.org.tw