Evaluation and Integration of OCP Servers from Software Perspective

Internet Initiative Japan Inc.
Takashi Sogabe
Who am I?

• Takashi Sogabe
 – @rev4t
 – Software Engineer, Internet Initiative Japan Inc.
 – Focusing
 • OpenStack
 – Involving
 • OpenContrail, mruby, Riak, etc.
Who is IIJ?

• Network operator
 – Provision of Internet connectivity and WAN service
 • Dedicated line
 • Mobile
 – SEIL
 • Next generation router developed by IIJ
 – Customer Premises Equipment
 – SEIL has a *SEIL Management Framework (SMF)* function for central management of various network functions

• Cloud operator
 – IIJ GIO
 • IaaS, PaaS
Ready-Made Data Centers

- co-IZmo/I
 - Container-Based Data Centers
Turn-Key Solutions for Hybrid Cloud

- Facility
 - co-Izmo/I
 - Conventional Data Center
- Racks, Servers, Switches
 - OCP
- CloudOS
 - OpenStack
- DCIM
 - (TBD)
Components of the System

- Each component is replaceable
- Customers can also buy a part of the system
PoC Environments

- Server
 - Winterfell, etc.
- JBODs
 - Knox, etc.
- Object Storage
 - Kinetic
- Networking
 - Cumulus, ARISTA, BROCADE
OCP Servers

• Simple
 – Minimum amount of peripherals
 • No VGA port
 • No Optical drive
 • 1 NIC with a Mezz slot
 • IPMI/DCMI
 – Easy to replace parts
Simple is better (1)

• Simple system leads to reduce time to boot
 – Winterfell
 • About 30sec
 – Conventional Servers
 • Over 120sec
Simple is better (2)

- OpenStack Integration
 - No need to buy unnecessary peripherals
 - Improve the degree of freedom in a combination of servers such as Compute nodes and Storage nodes
CloudOS

- OpenStack
 - Best way to deploy AWS-like IaaS

- Deployment Issue
 - hard to deploy OpenStack components
 - Commercial Distributions ease the difficulty
 - Metacloud, Mirantis, Piston, RedHat, etc.
 - TripleO (OpenStack on OpenStack)
 - Juju/MAAS
Components need to be Clustered

1. Horizon
 - Neutron

2. Glance
 - VM
 - Provide Image
 - Provision VMs
 - Save Images

3. Nova
 - VM
 - Provide Volume
 - Provide Volume

4. Cinder
 - Backup Volumes

5. Swift

Authenticate

Keystone
PoC Components

Management Server
Juju MAAS Nagios

neutron-gateway

The Internet

Clos Fabric

Pacemaker, Corosync, HAproxy

glance
dashboard
cloud-controller
cinder

nova-compute
keystone
swift-proxy
swift-storage

ceph
rabbitmq-server
mysql-cluster
Bare Metal Provisioning

• MAAS
 – Metal as a Service
 – Ideal for Ubuntu

• Cobbler
 – Suitable for other OS (RedHat, CentOS, etc.)
 – Used in OpenStack Distro (Mirantis, etc.)
Juju

• Deployment tool
 – Similar to Chef, Puppet, Ansible, etc.
 – Works well with MAAS
 – App
 • OpenStack
 • Hadoop
 • Etc.
Networking (1)

• Flat Network
 – Simple
 – Hard to scale out

• CLOS Topology
 – Scalable
 • ECMP forwarding balances flows
 – Need to overlay network
 • GRE, VXLAN, etc.
Networking (2)

• Single Pont of Management
 – Networking should incorporate the way of DevOps
 • Chef/Puppet/Ansible, CI
 – Automate everything!
 – Disaggregating hardware from software
 • We can use genuine Linux Distro
 – DevOps friendly 😊
Networking (3)

• Server Switch
 – FBOSS and Wedge
 – Pluribus Networks F64 and E68-M
 • Server with Switch chip

• Eliminate the barriers between servers and switches
 – RTT-sensitive apps can be deployed in server switches rather than conventional servers
Storage (1)

• Knox
 – High Density JBOD
 – 30 HDDs in a 2U chassis
Storage(2)

• Seagate Kinetic
 – Disaggregating HDDs from servers
 • Key-Value Store API
 • Protobuf with Ethernet
 – Benefits
 • Flexibility
 • Scalability
 • Efficiency
Storage (3)

• Swift with Kinetic
 – https://github.com/swiftstack/kinetic-swift
 – Works well with OpenStack

$ swift-ring-builder kinetic.builder
 kinetic.builder, build version 31
 1024 partitions, 3.000000 replicas, 1 regions, 1 zones, 4 devices, 0.00 balance
 The minimum number of hours before a partition can be reassigned is 1

 Devices: id region zone ip address port replication ip replication port name

<table>
<thead>
<tr>
<th>Devices</th>
<th>id</th>
<th>region</th>
<th>zone</th>
<th>ip address</th>
<th>port</th>
<th>replication ip</th>
<th>replication port</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.174.251.101:8123</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127.0.0.1</td>
<td>6010</td>
<td>127.0.0.1</td>
<td>6010</td>
<td></td>
</tr>
<tr>
<td>10.174.251.102:8123</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127.0.0.1</td>
<td>6020</td>
<td>127.0.0.1</td>
<td>6020</td>
<td></td>
</tr>
<tr>
<td>10.174.251.103:8123</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127.0.0.1</td>
<td>6030</td>
<td>127.0.0.1</td>
<td>6030</td>
<td></td>
</tr>
<tr>
<td>10.174.251.104:8123</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127.0.0.1</td>
<td>6040</td>
<td>127.0.0.1</td>
<td>6040</td>
<td></td>
</tr>
</tbody>
</table>

$ swift upload mycontainer test
test
$ swift download mycontainer test -o -awesome

$ for i in {1..4}; do kcmd -H 10.174.251.10$i list objects; done
objects.202f47d75a808c212d43c6dda051f39c.1407379571.83189.data.89a32569-fbbf-4ad3-8e8a-f46e1d632cbb
objects.202f47d75a808c212d43c6dda051f39c.1407379571.83189.data.dd7a79e0-3c92-43fb-937a-10fd11a28c32
objects.202f47d75a808c212d43c6dda051f39c.1407379571.83189.data.df9f0a7f-d2da-4d52-aa06-55e96a1f0dcd7
TIPS FOR OCP DEPLOYMENTS
IPMI Issues

• Need driver support for IPMI device on OCPv2 Windmill
 – https://bugs.launchpad.net/opencompute/+bug/1156667

• Workaround
 – Additional kernel options

 maas root tags new name='winterfell' comment='winterfell' ¥
 definition='//node[@class="system"]/vendor = "Wistron"' ¥
 kernel_opts='console=ttyS4 mei.blacklist=yes mei_me.blacklist=yes'
In-band Management

• Useful Information

– https://wiki.ubuntu.com/OpenCompute

```bash
$ sudo apt-get -y install build-essential debhelper dkms bzr libssl-dev
$ bzr branch lp:opencompute/mei
$ bzr branch lp:opencompute/dcmitool
$ bzr branch lp:opencompute/dcmi
$ cd mei
$ fakeroot dpkg-buildpackage -us -uc
$ cd ../dcmitool
$ fakeroot dpkg-buildpackage -us -uc
$ cd ~/dcmi
$ fakeroot dpkg-buildpackage -us -uc
$ cd ~
$ sudo dpkg -i mei-dkms_7.1.21.4.S_all.deb dcmi-dkms_2.1.6.28.MEI_all.deb
$ cd dcmitool
$ sudo dpkg -i dcmitool_1.8.10_amd64.deb
$ sudo bash
# echo "dcmi" >> /etc/modules
```
Summary

• We are developing container modules for IT users all over the world
• Users can have benefits by incorporating OCP design
• Disaggregation is a key factor to improve DevOps